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Abstract. The analysis of various regulatory methods for calculating 

reinforced concrete slabs for pushing and comparing with experiment 

results is made. The tested sample, measuring equipment and test 

bench are described. Sizes and materials for experimental prototype 

were chosen by existing beamless and capless slabs of monolithic 

reinforced concrete superstructures with column grid from 8×8 to 9×9 

m. 

Experimental research results of reinforcing concrete plate structure 

are presented for study purpose of stress-strain state when punching 

shear collapse occurring. Various aspects and observations obtained 

during the test are given. The comparison of the tested slab fragment 

with the complete response of slab structure is performed. 

Analysis of tested sample stress-strain state and punching bearing 

capacity calculations results in according to existing regular standards 

were made. Main criterias of punching shear collapse were determined 

and new procedure for punching calculation of RC concrete slabs was 

offered basing on significantly new approach in punching bearing 

capacity defining. 
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1. Introduction 

The study of the mechanism of punching reinforced concrete slab structures on the basis of theoretical 

studies, field experiments and comparison of the strength calculation results using various techniques 

implemented in SNiP 2.03.01-84 *, SP 63.13330.2012 and Eurocode 2, has been actively pursued in 

the last few years [1-5]. 

They criticize the current provisions of domestic standards in terms of calculating punching in the 

presence of shear reinforcement, which summarize the bearing concrete capacity at SSS stage I and 

the bearing shear reinforcement capacity at SSS stage III, which obviously does not correspond to the 

physical nature of the destruction mechanism. It should also be noted that there are other shortcomings 

of the standard methods of punching calculation according to SP 63.13330.2012: 

• the experiment results [3] show that the standard calculation method leads to a significant 

overestimation of the bearing punching capacity using high-strength concrete class B40, B45; 

• the conducted tests [4] show that, when increasing the die block dimensions, the standard 

calculation method also leads to an overestimation of the bearing punching capacity; 

• there is no consideration of the actual SSS pattern of the slab reinforced concrete structure 

support zones [5] including longitudinal reinforcement in the compression and tension zones, 

asymmetric stress state in orthogonal directions and on different column faces, loading mode; 

• the accounting method of the column torque when calculating floor slabs for punching has some 

contradictions; 



• the design requirement set forth in clauses 8.1.46 and 10.3.17, in contrast to the requirements of 

SNiP 2.03.01-84*, for placing shear reinforcement in the plan at a distance of at least h0/3 from 

the column faces (cargo area) for large thickness slab structures can lead to the implementation 

of the "constrained" punching mechanism, by analogy with the pile cap destruction; 

• there are no recommendations for the calculation of the soil reactive pressure for base plates, in 

contrast to the method of SNiP 2.03.01-84 * and Eurocode 2, 

• and according to Eurocode 2: 

• fully empirical determination of ultimate shear stresses in concrete based on the cube strength; 

• uniform distribution of tangential stresses at the working section height, and not at the height of 

the compression concrete; 

• a significant underestimation of the bearing punching capacity of the studied sample. 

The punching mechanism is one of the most dangerous types of slab reinforced concrete structure 

destruction and depends on a large number of factors. Due to this fact, the further study of issues 

related to the punching mechanism implementation and the coverage of new unexplored destruction 

aspects is an important task, especially when a wide range of specialists are provided with test results 

of a monolithic reinforced concrete slab for punching with a sufficiently detailed sample description 

and experiment conducted previously for comparison with the new design of the beamless slab 

reinforced by a hidden metal capital [6] at the rigid connection. 

 

2. Experimental researches 

2.1. Test bench and loading procedure description 

The supporting contour was made with dimensions in terms of 2.16 × 2.16 × 0.24 (h) m from a paired 

channel No. 24 of box-shaped cross-section to counduct tests. The supporting contour was installed on 

8 posts of 1.2 m height, basing on reinforced floor. The slab sample has been installed on the 

centrifugal solution with a support length of 100 mm along the supporting contour. The punching was 

carried out through a loading plate with 4 hydraulic energizers from a common collector, capable of 

creating a force of 1000 kN each. The total weight of the equipment, applied before the experiment 

start, was 8 tons. Then, the punching applied to the coating fragment through the column was changed 

stepwise, increasing by 200 kN with an interval of 20 minutes, immediately before the destruction 

moment. The photographs of the described test with the test sample are shown in Figure 1. 

 

2.2. Sample description 

The slab fragment manufacture uses heavy concrete of class B30 and reinforcement of class A500C 

18Ø12 mm with a pitch of 100 mm in two directions in the lower zone at a distance of 25 mm from 

the center of 1 row of reinforcement to the plate face. The overall slab fragment dimensions are 2.0 × 

2.0 × 0.24 (h) m. The column head was made in the form of a cube with a side size of 0.5 m and 

constructive reinforcement of the longitudinal (4Ø16 mm) and shear reinforcement (5Ø8 mm with an 

interval of 100 mm). 

2.3. Measuring equipment description 

The reinforcing bars were equipped with two 2PKB-10 resistive-strain sensors (RSS-3) from the each 

side of the bar as shown in Figure 2. The reinforcement surface was preliminarily prepared for gluing 

by means of arranging flat pads placed parallel to each other from different sides. The compression 

concrete in the alignment with characteristic reinforcing bars was equipped with PL-60-11 resistive-

strain sensors (RSS-2) with an interval of 100 mm as shown in Figure 2. The concrete surface was also 

preliminarily prepared for the gluing of resistive-strain sensors by means of flat pads arranged parallel 

to each other. The Vt-718-15 (0-30 mm) motion sensor (MS-1) was installed in the center of the lower 

sample edge to determine the deflections. Moreover, The PCE-MM200 electron microscope was 

installed on one of the column faces on the lower slab surface near the location of the resistive-strain 

sensors  3,4; 30 for measuring the opening of normal crack width using the subsequent comparison 

with the standard line of 0.4 mm thickness on the measuring line (Elcometer 143). 



Tables 1–3 show the indications of resistive-strain sensors, installed on the reinforcement and 

concrete, as well as the indicators of the motion sensor and the electron microscope as the sample is 

punched with a stepwise increasing load. 

 

2.4. Measurement results 

 

 

 

 

a) sample on the bench, side view  b) sample on the bench, view from 

below 

Figure 1. Test bench 

 

 

 

 

 

a) plan view  b) side view 

Figure 2. Slab fragment 

 

 

 



Table 1. Reinforcement resistive-strain sensor data 

Sensor No. 
Resistive-strain sensor relative deformations , % 

80 kN 280 kN 480 kN 680 kN 880 kN 1080 kN 1180 kN 

RSS -3-1 - 0.047 0.134 0.209 0.254 0.338 - 

RSS -3-2 - 0.045 0.140 0.208 0.254 0.409 - 

RSS -3-3 - 0.036 0.121 0.186 0.233 0.357 - 

RSS -3-4 - 0.041 0.126 0.190 0.234 - - 

RSS -3-5 - 0.038 0.143 - - - - 

RSS -3-6 - 0.037 0.118 0.184 0.237 0.369 - 

RSS -3-7 - - - - - - - 

RSS -3-8 - 0.032 0.103 0.170 0.234 0.299 - 

RSS -3-9 - 0.037 0.093 0.150 0.213 0.298 - 

 RSS -3-10 - 0.079 0.162 0.354 0.443 0.570 - 

RSS -3-11 - 0.042 0.096 0.147 0.199 0.268 - 

RSS -3-12 - 0.031 0.079 0.122 0.173 0.234 - 

RSS -3-13 - 0.037 0.086 0.120 0.148 0.226 - 

RSS -3-14 - 0.039 0.086 0.121 0.151 0.211 - 

RSS -3-15 - 0.031 0.071 0.107 0.136 0.187 - 

RSS -3-16 - 0.023 0.056 0.083 0.110 0.164 - 

RSS -3-17 - -0.005 -0.002 0 0.010 0.040 - 

RSS -3-18 - 0.021 0.043 0.109 0.133 0.182 - 

RSS -3-19 - 0.098 0.228 - - - - 

RSS -3-20 - 0.034 0.115 0.187 0.243 0.337 - 

RSS -3-21 - 0.024 0.059 0.092 0.120 0.175 - 

RSS -3-22 - 0.022 0.064 0.125 0.171 0.234 - 

 

Table 2. Concrete resistive-strain sensor data 

Sensor No. 
Relative concrete sensor deformations , % 

80 kN 280 kN 480 kN 680 kN 880 kN 1080 kN 1180 kN 

RSS -2-29 - 0.024 0.019 0.018 0.026 0.049 - 

RSS -2-30 - 0.012 0.001 -0.005 0.001 0.03 - 

RSS -2-31 - 0.007 -0.003 -0.011 -0.004 0.031 - 

RSS -2-32 - 0.015 0.006 0.001 -0.007 -0.019 - 

RSS -2-33 - -0.016 -0.038 -0.053 -0.073 -0.099 - 

RSS -2-34 - 0.019 0.016 0.014 0.003 -0.012 - 

RSS -2-35 - - - - - - - 

RSS -2-36 - 0 -0.007 -0.015 -0.021 -0.025 - 

RSS -2-37 - - - - - - - 

RSS -2-38 - -0.018 -0.04 -0.061 -0.072 -0.059 - 

RSS -2-39 - -0.028 -0.052 -0.083 -0.101 -0.124 - 

 

 

 

 



Table 3. Vertical motion data 

Sensor 

Vertical motion (VM-718-15), mm 

Normal crack opening width (PCE-MM200 and RSS-3-3), mm 

80 kN 280 kN 480 kN 680 kN 880 kN 1080 kN 1180 kN 

VM-718-15 - 0.74 2.40 4.01 5.73 8.71 9.26 

PCE-MM200 - 0.288 0.352 0.520 0.624 0.736 - 

RSS-3-3* - 0.086 0.290 0.446 0.559 0.857 - 

* – to calculate the crack opening width using the RSS-3-3 sensor readings and the average annular crack 

spacing equal to 240 mm 

 

3. Analysis of the strain-stress state and the sample destruction 

The compressive concrete strength according to the test results of cube samples of 100 × 100 × 100 

mm and subsequent statistical processing corresponded to conditional class B27.3 with mechanical 

characteristics: Rb,n = 20.2 MPa, Rbt,n = 1.62 MPa, Eb = 31200 MPa. The following concrete values 

were used to compare the experimental values of relative deformations with characteristic values on 

two-line strain diagrams under conditions of short puncing action: b1=0.15%, b2=0.35%, Eb,red=13467 

MPa and reinforcement: s0=0.22%, s2=2.5%, Rs,n=500 MPa, Es=200000 MPa, s=0.5%. 

The plate in dimensions between the supporting contour and the column top is in a complex strain-

stress state (SSS), characterized by the action of bending and torsional moments, and shear forces. In 

the upper zone, directly below the column, the bulk strain-stress state occurs under the action of action 

of all strain tensor components. 

The supporting contour perimeter has tearing and rotation of the side slab faces, reaching 

maximum values in the sample corners as they are punched, and therefore the vertical loads gradually 

start to be transferred to the supporting contour not through the entire sample support area, but only 

through the middle slab fragment parts. This aspect explains the different in sign and significance 

values of the relative deformations for individual bars. Table 1 according to sensor data shows 17, 18 

and 9, 10, respectively. 

When analyzing the resistive-strain sensor results Table 1 shows that the plastic material work 

begins at 4th punching stage (880 kN), when the values of relative deformations in sensors 1–10 

installed on half of the bars exceed s0=0.22%. As for the other half of the bars at this punching stage, 

the reinforcement stresses do not exceed the yield strength. At the next stage, according to the 

resistive-strain sensors, the deformations of all the bars in this cross section, except for two on each 

side, pass into the plastic diagram area. 

When analyzing the sensor values  of concrete 29-32 Table 2 shows the different SSS pattern: there 

is a tension on the side of the compression concrete on one column side, then in the punching process 

it is transformed into compression, then in separate zones again into tension. As for the sensor samples 

38 and 39, there is a similar situation, but without changing the stress signs: there are significantly less 

relative deformations in sensor 38 on the column face than in sensor 39, separated from the column at 

a distance close to the slab thickness. The explanation of these resistive-strain sensor values  in the 

features of the SSS slab is the occurrence of local tension zones on the concrete surface around the 

perimeter of the column due to the indentation punching in two planes with the separation of the slab 

corners in diagonal directions and others. It should be noted that the maximum values of the concrete 

and reinforcement relative deformations during fracture are substantially less than its limiting values, 

which are specified above using state diagrams. 

The relationship between the punch and the vertical motions in the slab center is given in Table 3; 

it is almost linear dependence in the range of 2-4 punching stages, and at 1st and 5th stages it is 

“steeper” and “gentler”, respectively. The value of the maximum deflection at 6th punching stage was 

fixed at a load in the range of 1080–1280 kN immediately before the sample destruction without 



ensuring the holding for each stage of exposure at 20 min. and the possibility of taking readings of all 

other sensors. 

The sample destruction at the 6th stage under a punch of ~ 1180 kN was brittle with the formation 

of a punching pyramid and was accompanied by strong cotton, associated with the separation surface 

formation in the concrete body and the sample separation into parts. The cracking pattern on the 

bottom slab face after the sample destruction is shown in Figure 3; there is a “through” crack (upper 

base of the punching pyramid) and local chipped concrete along the column perimeter shown in 

Figures 4 and 5 (b), respectively. The cracks formed on the lower and upper edges of the slab are 

shown in fig. 5 close up. It should be noted that there were almost no cracks on the lower slab face in 

the column dimensions due to the fact that the slab cross-section together with the column has 

significantly larger geometrical characteristics compared to a regular section. The distance between 

the annular cracks around the column varies from 100 to 300 mm, the crack length has gaps and 

intersections with radial cracks, which in turn are almost straight along the supporting contour and 

around the column, are mostly curvilinear and can deviate significantly from the original direction. 

The values of the normal crack opening width, obtained experimentally (according to an electron 

microscope) and analytically (according to relative reinforcement deformations) and given in Table 3, 

significantly differ only at the first punching stage; further, the obtained results show satisfactory 

convergence. 

 

 

 
Figure 3. Lower (tension) slab face 

 



 
Figure 4. Upper (compression) slab face 

 

 

 

 

 

 

а) ring crack on the lower the slab face  b) column cracks and spalls 

Figure 5. Cracks characterizing the punching pyramid 

 



4. Bearing punching capacity determination and analysis of results 

The bearing punching capacity according to the methods of SNiP 2.03.01-84* and SP 63.13330.2012, 

which are almost equivalent to each other, amounted to 962 kN. The punching coefficient, equal to the 

ratio of the calculated and destructive punches, was 962/1180 = 0.82. When calculating punching 

according to the Eurocode 2 method, a fundamentally different approach is used; the maximum shall 

stresses (shall stresses are evenly distributed over the working section height) on two different 

contours: along the perimeter of the column faces and around the perimeter around the column at a 

distance of 2h0 are compared with the maximum allowable stresses of the concrete shall for each 

circuit separately. The utilization factor for the column faces was VEd,col/VRd,max = 2.82/7.2 = 0.39 and 

on the outer contour it was VEd,u1/VRd,c = 1.06/0.80 = 1.33. Thus, when comparing factors based on 

SNiP and Eurocode, the latter had a significant margin of 1.33/0.82 = 1.62.  

The reduced slab torque in the cross section with dimensions of 2000 × 240 (h) mm on the column 

face with a load of 1180 kN, obtained on the basis of an improved technique [6], was 206 kN*m, 

while the limiting torque of a given cross section for the most remote from the longitudinal 

reinforcement face (a = 25 + 12 = 37 mm), was equal to 193 kN*m. The flexural utilization factor, 

equal to the ratio of the limiting and reduced torques, was 206/193 = 1.07. Obviously, in this case, the 

implementation of the punching mechanism could be triggered by the achievement of the limiting 

bearing slab capacity during torquing, and this factor is one of the prerequisites for improving the 

calculation punching method. 

According to the experiment results, it was also found that the punching pyramid surface had a 

“fracture” on the column faces, i.e., the height of the truncated pyramid is somewhat less (by the 

height of the compression concrete near the column) than it is shown at Figures 5 (b) and 6. In tis case, 

it should be noted that the compression concrete height of the specified cross section in determining 

the limiting torque was 25.1 mm and slightly exceeded the corresponding vertical depth of the 

“through” crack along the column boundary during the punching pyramid formation. Moreover, the 

compression slab structure height is variable and increases with distance from the column while 

reducing the level of compressive stresses. Due to this fact, there is a need for more accurate 

determination of the compression concrete height in the column dimensions in the marginal stage. 

 

Figure 6. Side pusing pyramid faces with "fractures" 

 

The other important factor recorded experimentally and schematically and shown in Figure 6, 

concerns the punching pyramid inclination angles, which approximately amount to – 20 °. Figures 3 

and 5 (a) show the areas of the lower punching pyramid base using the double lines. It should be noted 



that there is a separation only in the upper and lower slab parts as shown in Figure 3, in the direction 

of the longitudinal reinforcement having a minimum protective layer, and there are no any such 

“through” cracks on the side slab parts as at the fracture beginning (after cotton) the pressure in the 

hydraulic station drops instantly, and only the load of the slab own weight continues and equipment, 

which is not enough for further destruction with full separation of the sample into parts. When using 

domestic regulatory punching calculation methods, the reduced pyramid inclination angles should 

obviously increase the bearing capacity, which is not confirmed by the obtained value of the breaking 

load and actually indicates the implementation of another slab structure destruction mechanism during 

the punching by Eurocode 2 that is one of the main assumptions that is used in domestic regulatory 

procedures and implies a uniform distribution of tension stresses across the punching pyramid surface, 

but nevertheless it is not true. The fallacy of such assumption can be easily illustrated in the following 

example; it is just necessary to take a paper sheet at two points closely spaced from each other, and 

begin tearing one part away from the other, applying force in opposite directions across the sheet, but 

it is impossible to distribute the load evenly along the break line. This is the fundamental difference of 

the destruction mechanism during punching from other types of destruction, which is primarily 

determined by the material properties such as various concrete resistance to tension and compression, 

as well as other factors incuding design, strength and stress level, and pucnnching mode.  

 

5. Conclusions and the proposed method of calculating punching slabs 

According to the experiment results and the other data analysis, it is necessary to note some important 

aspects and suggest the following method development for calculating pushing slab reinforced 

concrete structures: 

• the tested surface and floor slab fragments in the form of individual samples, freely supported 

along the contour, differ significantly from multi-span continuous analogs of the applicable SSS 

in the support zone; 

• the inclination angle of the punching pyramid faces is variable and depends on many factors; 

• the height of the compression concrete in the cross section of the column  face support zone is 

variable and increases with distance from the column while reducing the level of compression 

stresses; 

• the concrete surface near the column faces, associated with pressing the punch into the slab 

body has tension stresses; 

• the normal crack opening width, calculated on the basis of electron microscope data, at the first 

punching stage differs significantly from the similar width, calculated analytically using the 

reinforcement resistive-strain sensors, starting from the second stage, the matching results can 

be considered satisfactory; 

• the uniform distribution of tension stresses on the puncing pyramid surface does not correspond 

to reality; 

• the punching mechanism trigger may lead to the transition of a number of tension reinforcing 

bars into the plastic work area and decrease critically in the height of the compression concrete 

due to the growth of normal and inclined cracks; 

in general, it is possible to use Coulomb's law modification for the mathematical description of the 

punching mechanism at different SSS stages: 
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where,  xi – height of the compression concrete at the i-th of the column face;  

bi – width of the i-th column face; 

φp – concrete shear coefficient; 

bi – horizontal normal stresses in concrete at the i-th column face; 

Rbt – concrete tensile strength; 

1 – SSS coefficient: for III phase – 1, for I phase – 1/Cos45°=1.4; 



2 – punching coefficient: with static load – 1; 

3 – coefficient taking into account the constructive solution features: in case of no shear 

reinforcement – 1. 

To calculate the height of the compression concrete xi at the i-th column face at SSS stage III, it is 

recommended to use the following assumption: a change in the height of the compression concrete in 

cross section is inversely proportional to the torque change: 

)(/1)( bMb = ,      (2) 

where,   (b) is a coefficient of inverse transformation (maximum torque value to the corresponding 

minimum height of the compression concrete and vice versa); 

b – slab cross section width in the pushing area, 
2

210)( bАbААbM ++= – law of torque variation in the cross section. 

To determine the law of the torque variation in the cross section, it is recommended to solve the 

problem of plate bending in a linear formulation using flat finite elements based on the Kirchoff 

theory. Further, based on the calculated reduced height of the compression concrete xred of the slab 

cross section in the punching zone and the corresponding reduced inverse transform coefficient xred, 

the height of the compression concrete is calculated in the column dimensions: 
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where,  
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=  – proportionality coefficient (const for i-th column face); 

)/( bRARx bssred =  – reduced height of the compression concrete slab cross-section in the 

punching zone; 
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  – reduced inverse transform coefficient for slab cross section 

in the punching zone; 

 (b)i –  inverse transform coefficient in the punching zone; 

M (b)i – torque in the i-th final element in the pushing area; 

nb – the number of finite elements of the slab section in the punching zone, 
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  – reduced inverse transform coefficient for the slab cross-section 

in the dimensions of the i-th column face; 

 (b)ci –  coefficient of inverse transformation in the column dimensions; 

M (b)ci – torque in the i-th final element in the column dimensions; 

nc – the number of finite elements of the slab section in the column dimensions. 

 

As for the tested sample at SSS stage III, the formula (1) transforms to the form, and the bearing 

concrete punching capacity is: 

5.1038)62.17.32.20(8.60.2111)(321, =+=+= btpbicolultb RxuF  kN,   (1.1) 

where, u = 2.0 m – the column cross section perimeter; 

xcol = 6.8 mm – height of the compression concrete at the column faces; 

φp = 3.7 – concrete shear coefficient; 

b = Rb = 20.2 MPa and Rbt = 1.62 MPa – concrete resistance to compression and tension. 



 It should be noted that in this case the concrete shall coefficient is determined on the basis of 

solving the inverse problem with a known breaking load and is the subject of further research and 

experiments, as well as additional correction factors 1, 2, 3 and the height of the compression 

concrete at the column faces xcol. 

In the case of no significant slab torque influence on the construction SSS in the punching zone, the 

function (1) transforms to the classical form with the formation of a punching pyramid under 45 °, and 

the bearing concrete capacity for concrete is: 

2.975)62.10(2150.2114.1)(321, =+=+= btpbicolultb RxuF  kN,     (1.2) 

where 1 = 1/Cos45° = 1.4 – SSS coefficient; 

u = 2.0 m – column cross section perimeter; 

xcol = h0 = 215 mm – working section height; 

b = 0 MPa and Rbt = 1.62 MPa – concrete compressive and tensile strength. 

Due to this fact, the improvement of the current regulatory methods for calculating the punching 

and reinforcement requirements of slab reinforced concrete structures is quite an urgent task, requiring 

further analysis and synthesis of existing and new experiment and research results. 
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